Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.provenanceFacultad de Ciencias Exactas y Naturales de la UBA-
dc.contributorCabrelli, Carlos-
dc.contributorPaternostro, Victoria-
dc.creatorPaternostro, Victoria-
dc.date.accessioned2018-05-04T22:04:59Z-
dc.date.accessioned2018-05-28T16:48:43Z-
dc.date.available2018-05-04T22:04:59Z-
dc.date.available2018-05-28T16:48:43Z-
dc.date.issued2011-
dc.identifier.urihttp://10.0.0.11:8080/jspui/handle/bnmm/74638-
dc.descriptionEn esta tesis se estudian los espacios invariantes por traslaciones en el contexto de grupos localmente compactos y abelianos (grupos LCA). Para un grupo LCA G y un subgrupo cerrado H ⊆ G, se introduce la noción de espacio H-invariante o espacio invariante por traslaciones en H. En el caso en que H es un subgrupo discreto y numerable de G, se muestra que el concepto de función rango y las técnicas de fibración son válidos en este contexto. Combinando estas dos herramientas, se prueba una caracterización de los espacios H-invariantes en término de las fibras de sus elementos. Como consecuencia, se obtienen caracterizaciones de marcos y bases de Riesz de estos espacios, extendiendo así resultados previos y conocidos para el caso R y el reticulado Z. Por otro lado, se estudia el problema de la extra invariancia de los espacios H-invariantes. Los resultados obtenidos de la extra invariancia establecen condiciones necesarias y suficientes para que un espacio H-invariante sea además invariante por traslaciones en un subgrupo cerrado M de G que contiene a H. También, se prueba que dado un subgrupo cerrado M de G que contiene a H existe un espacio H-invariante V que es exactamente M-invariante. Es decir, V no es invariante por traslaciones en ningún otro subgrupo M que contiene a M. Además, se obtienen estimaciones de los tamaños de los soportes de la transformada de Fourier de los generadores de los espacios H-invariantes en relación a su M-invariancia. Finalmente, se investigan los subespacios de L2 (G) que son invariantes por traslaciones en un subgrupo K de G y también invariantes por modulaciones en Λ, siendo Λ un subgrupo del grupo dual de G. Se prueba una caracterización de estos espacio para el caso en que K y Λ son discretos.-
dc.descriptionIn this thesis we study shift invariant spaces in the context of locally compact abelian (LCA) groups. For G an LCA group and H ⊆ G a closed subgroup of G we introduce the notion of H-invariant space or shift invariant space under translations in H. In case when H is a countable discrete subgroup of G, we show that the concept of range functions and the techniques of fiberization are valid in this context. Combining these tools, we provide a characterization for H-invariant spaces in terms of the fibers of its elements. As a consequence, we prove characterizations of frames and Riesz bases of these spaces extending previous results that were known for the classical case of Rd and the lattice Zd . On the other hand, we study the problem of extra invariance of H-invariant spaces. Our results of extra invariance state several necessary and sufficient conditions for an H- invariant spaces to be invariant along translations in a closed subgroup of G, M, containing H. In addition we show that for each closed subgroup M of G which contains H there exists an H-invariant space V that is exactly M-invariant. That is, V is not invariant under any other subgroup M ′ containing M. We also obtain estimates on the support of the Fourier transform of the generators of the H-invariant spaces, related to its M-invariance. Lastly, we investigate the structure of those closed subspace of L2 (G) which are invari- ant by translations along K and also invariant under modulations in Λ, begin K and Λ closed subgroups of G and the dual group of G respectively. We obtain a characterization of these spaces when K and Λ are discrete.-
dc.descriptionFil:Paternostro, Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.-
dc.formatapplication/pdf-
dc.languagespa-
dc.publisherFacultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightshttp://creativecommons.org/licenses/by/2.5/ar-
dc.source.urihttp://digital.bl.fcen.uba.ar/gsdl-282/cgi-bin/library.cgi?a=d&c=tesis&d=Tesis_5012_Paternostro-
dc.subjectSHIFT-INVARIANT SPACE-
dc.subjectTRANSLATION INVARIANT SPACE-
dc.subjectLCA GROUPS-
dc.subjectRANGE FUNCTION-
dc.subjectFIBERS-
dc.subjectSHIFT-MODULATION INVARIANT SPACE-
dc.subjectESPACIOS INVARIANTES POR TRASLACIONES ENTERAS-
dc.subjectESPACIOS INVARIANTES POR TRASLACIONES-
dc.subjectGRUPOS LCA-
dc.subjectFUNCIONES RANGO-
dc.subjectFIBRAS-
dc.subjectESPACIOS INVARIANTES POR MODULACIONES Y TRASLACIONES-
dc.titleEstructura y propiedades de espacios invariantes por traslaciones en grupos abelianos localmente compactos-
dc.titleStructure and properties of shift invariant spaces on locally compact abelian groups-
dc.typeinfo:eu-repo/semantics/doctoralThesis-
dc.typeinfo:ar-repo/semantics/tesis doctoral-
dc.typeinfo:eu-repo/semantics/publishedVersion-
Aparece en las colecciones: FCEN - Facultad de Ciencias Exactas y Naturales. UBA

Ficheros en este ítem:
No hay ficheros asociados a este ítem.