Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorAmandi, Analia Adriana-
dc.creatorYannibelli, Virginia Daniela-
dc.date2016-07-29T15:06:54Z-
dc.date2016-07-29T15:06:54Z-
dc.date2014-09-
dc.date2016-07-28T18:32:04Z-
dc.date.accessioned2019-04-29T15:56:01Z-
dc.date.available2019-04-29T15:56:01Z-
dc.identifierAmandi, Analia Adriana; Yannibelli, Virginia Daniela; A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem; Springer; Lecture Notes In Computer Science; 8669; 9-2014; 412-423-
dc.identifier0302-9743-
dc.identifierhttp://hdl.handle.net/11336/6798-
dc.identifier.urihttp://rodna.bn.gov.ar:8080/jspui/handle/bnmm/305667-
dc.descriptionIn this paper, we address a project scheduling problem. This problem considers a priority optimization objective for project managers. This objective implies assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm incorporates a diversity-adaptive simulated annealing algorithm into the framework of an evolutionary algorithm with the aim of improving the performance of the evolutionary search. The simulated annealing algorithm adapts its behavior according to the fluctuation of diversity of evolutionary algorithm population. The performance of the hybrid evolutionary algorithm on six different instance sets is compared with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results show that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.-
dc.descriptionFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina-
dc.descriptionFil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.languageeng-
dc.publisherSpringer-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-10840-7_50-
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-10840-7_50-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-10840-7_50-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/-
dc.sourcereponame:CONICET Digital (CONICET)-
dc.sourceinstname:Consejo Nacional de Investigaciones Científicas y Técnicas-
dc.sourceinstacron:CONICET-
dc.subjectproject scheduling-
dc.subjecthuman resource assignment-
dc.subjectmulti-skilled resources-
dc.subjecthybrid evolutionary algorithms-
dc.subjectCiencias de la Computación-
dc.subjectCiencias de la Computación e Información-
dc.subjectCIENCIAS NATURALES Y EXACTAS-
dc.titleA Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.typeinfo:ar-repo/semantics/articulo-
Aparece en las colecciones: CONICET

Ficheros en este ítem:
No hay ficheros asociados a este ítem.