Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.provenanceCONICET-
dc.creatorBecher, Veronica Andrea-
dc.creatorBugeaud, Yann-
dc.creatorSlaman, Theodore A.-
dc.date2018-09-18T18:23:31Z-
dc.date2018-09-18T18:23:31Z-
dc.date2016-02-
dc.date2018-09-13T13:15:22Z-
dc.date.accessioned2019-04-29T15:37:14Z-
dc.date.available2019-04-29T15:37:14Z-
dc.date.issued2016-02-
dc.identifierBecher, Veronica Andrea; Bugeaud, Yann; Slaman, Theodore A.; On simply normal numbers to different bases; Springer; Mathematische Annalen; 364; 1-2; 2-2016; 125-150-
dc.identifier0025-5831-
dc.identifierhttp://hdl.handle.net/11336/60110-
dc.identifierCONICET Digital-
dc.identifierCONICET-
dc.identifier.urihttp://rodna.bn.gov.ar:8080/jspui/handle/bnmm/297885-
dc.descriptionLet s be an integer greater than or equal to 2. A real number is simply normal to base s if in its base-s expansion every digit 0,1,…,s-1 occurs with the same frequency 1/s. Let S be the set of positive integers that are not perfect powers, hence S is the set {2,3,5,6,7,10,11,…}. Let M be a function from S to sets of positive integers such that, for each s in S, if m is in M(s) then each divisor of m is in M(s) and if M(s) is infinite then it is equal to the set of all positive integers. These conditions on M are necessary for there to be a real number which is simply normal to exactly the bases sm such that s is in S and m is in M(s). We show these conditions are also sufficient and further establish that the set of real numbers that satisfy them has full Hausdorff dimension. This extends a result of W. M. Schmidt (1961/1962) on normal numbers to different bases.-
dc.descriptionFil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina-
dc.descriptionFil: Bugeaud, Yann. Université de Strasbourg; Francia-
dc.descriptionFil: Slaman, Theodore A.. University of California at Berkeley; Estados Unidos-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.languageeng-
dc.publisherSpringer-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/s00208-015-1209-9-
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-015-1209-9-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/-
dc.sourcereponame:CONICET Digital (CONICET)-
dc.sourceinstname:Consejo Nacional de Investigaciones Científicas y Técnicas-
dc.sourceinstacron:CONICET-
dc.source.urihttp://hdl.handle.net/11336/60110-
dc.subjectNORMAL NUMBERS-
dc.subjectSIMPLY NORMAL NUMBERS-
dc.subjectCiencias de la Computación-
dc.subjectCiencias de la Computación e Información-
dc.subjectCIENCIAS NATURALES Y EXACTAS-
dc.titleOn simply normal numbers to different bases-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.typeinfo:ar-repo/semantics/articulo-
Aparece en las colecciones: CONICET

Ficheros en este ítem:
No hay ficheros asociados a este ítem.